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Laser-induced fluorescence was used to measure the lateral dispersion of passive solute
in random arrays of rigid, emergent cylinders of solid volume fraction ¢ =0.010-
0.35. Such densities correspond to those observed in aquatic plant canopies and
complement those in packed beds of spheres, where ¢ > 0.5. This paper focuses on
pore Reynolds numbers greater than Re, = 250, for which our laboratory experiments
demonstrate that the spatially averaged turbulence intensity and K,,/(U,d), the
lateral dispersion coefficient normalized by the mean velocity in the fluid volume,
U,, and the cylinder diameter, d, are independent of Re,. First, K,,/(U,d) increases
rapidly with ¢ from ¢ =0 to ¢ =0.031. Then, K,,/(U,d) decreases from ¢ =0.031
to ¢=0.20. Finally, K,,/(U,d) increases again, more gradually, from ¢ =0.20 to
¢ =0.35. These observations are accurately described by the linear superposition of
the proposed model of turbulent diffusion and existing models of dispersion due to
the spatially heterogeneous velocity field that arises from the presence of the cylinders.
The contribution from turbulent diffusion scales with the mean turbulence intensity,
the characteristic length scale of turbulent mixing and the effective porosity. From a
balance between the production of turbulent kinetic energy by the cylinder wakes and
its viscous dissipation, the mean turbulence intensity for a given cylinder diameter
and cylinder density is predicted to be a function of the form drag coefficient and the
integral length scale /,. We propose and experimentally verify that [, = min{d, (s,)a},
where (s,)4 is the average surface-to-surface distance between a cylinder in the array
and its nearest neighbour. We farther propose that only turbulent eddies with mixing
length scale greater than d contribute significantly to net lateral dispersion, and
that neighbouring cylinder centres must be farther than »* from each other for the
pore space between them to contain such eddies. If the integral length scale and the
length scale for mixing are equal, then r* =2d. Our laboratory data agree well with
predictions based on this definition of r*.

1. Introduction

Turbulence and dispersion in obstructed flows have been investigated for decades
because of their relevance to transport in groundwater (e.g. Bear 1979), to transport
in flow around buildings (e.g. Davidson et al. 1995) and trees (e.g. Kaimal & Finnigan
1994, chapter 3), and to engineering applications such as contaminant transport and
removal in artificial wetlands (Serra, Fernando & Rodriguez 2004). In particular, flow
in a packed bed of spheres has been examined intensively, and analytical descriptions
of different mechanisms that contribute to dispersion in Stokes flow were derived
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FIGURE 1. Definition of key geometric parameters for an array of cylinders of uniform diameter
d. (a) In a random array, the centre-to-centre distance to the nearest neighbour, s,., differs
for each cylinder. (b) In a periodic square array, the centre-to-centre distance to the nearest
neighbour is s +d =1/, /m for all cylinders, where m is the number of cylinders per unit area.

by Koch & Brady (1985). In packed beds of spheres, the solid volume fraction ¢
is approximately constant at ¢ ~0.6 (e.g. Mickley, Smith & Korchak 1965; Jolls &
Hanratty 1966; Han, Bhakta & Carbonell 1985; Yevseyev, Nakoryakov & Romanov
1991; Dullien 1979, p. 132). In contrast, previous studies on emergent (i.e. spanning
the water column and penetrating the free surface), rigid aquatic vegetation have
focused on low solid volume fraction arrays (¢ =0.0046-0.063, e.g. Nepf, Sullivan &
Zavistoski 1997; White & Nepf 2003). Such sparse arrays are characteristic of salt
marshes, for example, where ¢ =0.001-0.02 (Valiela, Teal & Deuser 1978; Leonard &
Luther 1995). However, ¢ in aquatic plant canopies can approach that of packed beds.
In mangroves, for example, ¢ can reach 0.45 because of the dense network of roots
(Mazda et al. 1997). In constructed wetlands, ¢ may extend to 0.65 (Serra et al. 2004),
and in this context Serra et al. (2004) reported lateral dispersion measurements at low
Reynolds numbers in random arrays of ¢ =0.10, 0.20 and 0.35. This paper investigates
turbulence and solute transport in arrays of randomly distributed, emergent, rigid
cylinders of ¢ =0.010-0.35 in turbulent flow. Models for turbulence intensity and net
lateral dispersion are presented and verified with laboratory measurements.

In §2, we present a model for the mean turbulence intensity and the lateral
dispersion coefficient as a function of cylinder distribution and cylinder density.
In § 3, the experimental procedure for measuring turbulence, the integral length scale
and net lateral dispersion is described. In §4, the experimental results are presented
and compared with the theory. Also, in Appendix A, analytical expressions of nearest-
neighbour distances in a random array of cylinders of finite volume are presented,
and parameters relevant to the models are derived.

2. Background theory

We consider a homogeneous, two-dimensional array of rigid circular cylinders of
uniform diameter d distributed randomly with a constant density m (cylinders per unit
horizontal area). The corresponding solid volume fraction is ¢ = mmnd?/4. The centre-
to-centre distance from a particular cylinder to its nearest neighbour is denoted
by s.., as illustrated in figure 1(a) for an arbitrary cylinder. The corresponding
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surface-to-surface distance is denoted by s, (=s,. — d). Analytical expressions of
(s.)4, the mean nearest-neighbour separation defined between cylinder surfaces, are
derived in Appendix A. ( ), denotes an average over many cylinders in the array.
The Cartesian coordinates x = (x, y, z) = (x1, X2, x3) are defined such that the x-axis is
aligned with (u), the fluid velocity averaged over time and the fluid volume. The y-axis
is in the horizontal plane and perpendicular to the x-axis (figure la). The vertical
z-axis is aligned with the cylinder axes. Flow in a cylinder array is characterized by
the cylinder Reynolds number, Re; = (u)d/v, where v is the kinematic viscosity, as
well as the Reynolds number based on a mean pore scale, Re, = (u)s/v. Here, the
mean pore scale s =1/,/m —d is defined as the surface-to-surface distance between
aligned cylinders in a square array with the same ¢, as illustrated in figure 1(b).

2.1. Solute transport in a random array
Species conservation is described by the expression

% +v-Vec=—-V-(—DyVc), (2.1)
where ¢ is time, c¢(x, t) is the solute concentration, v(x, t)=(u, v, w)= (v, vz, v3) 1S
the fluid velocity and Dy is the molecular diffusion coefficient. In obstructed turbulent
flows, it is convenient to first decompose ¢ and v into a local time average and
instantaneous deviations from that average, and to farther decompose the time-
averaged parameters into a spatial average and local deviations from that average
(e.g. Raupach & Shaw 1982; Finnigan 1985). The temporal averaging operation,
denoted by an overbar, is defined with a time interval much longer than the time
scales of turbulent fluctuations and vortex shedding. The spatial averaging operation,
denoted by ( ), is defined with an infinitesimally thin volume interval V, that spans
many cylinders. The solid (cylinder) volume is excluded from V. Then, ¢ = (¢)(x, 1)+
" (x,t) + c'(x,1) and v=(v)(x, 1) + V"(x,1) + v'(x, ), where ™ denotes the spatial
fluctuations of the temporal average and ' denotes the temporal fluctuations. By
definition, ¢/, v/, (¢”), (v”) =0. Also, (v) = (w) =0. Substituting these expressions into
(2.1), averaging over the same temporal and spatial intervals, and retaining only the
dominant terms yield (Finnigan 1985, equation 21)

In addition to fluxes associated with the local temporal fluctuations, <W>, the
averaging scheme introduces dispersive fluxes associated with the time-averaged
spatial fluctuations, (3"¢”).
Laboratory measurements by White & Nepf (2003) and in the present study (see
figure 16) suggest that net dispersion is Fickian. Then, (2.2) simplifies to
ey . 3(c) 9%(c)
o TG = Kiga

(2.3)

where Kj; are the coefficients for net dispersion. In this paper, we are concerned with
K,,, the net lateral dispersion coefficient.

Farthermore, (v'c’) and (3"¢"), like molecular diffusion, are expected to be Fickian
if the spatial scale of the contributing mechanisms is smaller than the scale over
which the mean concentration gradient varies (Corrsin 1974; Koch & Brady 1985;
White & Nepf 2003). The two mechanisms associated with <v’c’> and (0"¢”), as
identified below, both have characteristic scales of d and (s,)4 (§2.2 and §2.3).
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Because the dimensions of the averaging volume V; are much larger than 4 and
(s.)a by definition, (¢) is expected to vary slowly at these spatial scales. Therefore,
(v'¢’) and (v'¢”) are expected to be Fickian. Consequently, K,, is expected to be
the linear sum of three constant coefficients, one that parameterizes (v'c’), one that
parameterizes (v'c¢”) and the molecular diffusion coefficient. The first two coefficients
represent, respectively, (i) turbulent diffusion and (ii) mechanical dispersion (i.e.
independent of molecular diffusion) due to the spatially heterogeneous velocity field
generated by the randomly distributed cylinders. In this paper, the two processes
are treated as independent, and one is not considered in the description of the other.

Molecular diffusion is negligible, as we only consider turbulent flow.

2.2. Contribution from turbulence
The classic scaling for turbulent diffusion is K, ~ (,/k;)l., where [, is the length scale
associated with mixing due to turbulent eddies and k, =(u> 4+ v + w'?)/2 is the
turbulent kinetic energy per unit mass (e.g. Baldyga & Bourne 1999, chapter 4).
Previously, Nepf (1999) assumed that, in a cylinder array, [, is equal to the
integral length scale of the largest turbulent eddies, /,, and that /, =d when cylinder
spacing is smaller than the water depth. Then, K, ~ (\/kT)d Nepf (1999) fitted this
turbulent diffusion scale to experimental observation at Re, = U,s/v =2000-10000
in a ¢ =0.0046, periodic, staggered cylinder array (see Zavistoski 1994 for the exact

cylinder configuration) to obtain

K,y k

¥ =0.9<\/>'>. (2.4)
U,d U,

The mean pore velocity U, is the average of u over all fluid volume within the array,
and is determined as U, = Q/[(H)W(1 — ¢)], where Q is the volumetric flow rate,
(H) is the mean water depth and W is the width of the laboratory flume in which the
array was contained. Note that () ~ U, if the thickness of the boundary layers at
the bed and sidewalls of the flume is negligible relative to (H) and W. Equation (2.4)
is inconsistent with experiment at high ¢, as will be demonstrated in §4.3. Below,
we propose a new scale model for turbulent diffusion, in which I, and I, may be
constrained by cylinder spacing at high ¢.

2.2.1. Turbulence intensity

The functionality of the mean turbulence intensity, (,/k;/(i)), can be predicted
from the temporally and spatially averaged mean and turbulent kinetic energy
budgets in the array (see e.g. Raupach, Antonia & Rajagopalan 1991, equation 4.3a, b
or Kaimal & Finnigan 1994, equation 3.40 for the turbulent kinetic energy budget).
In cylinder arrays, a wake production term, — <Tu’j”8uﬁ”/ dx; ) (= 0), accounts for

turbulence production by the cylinder wakes. Numerical simulation by Burke &
Stolzenbach (1983, figure 5.23) demonstrates for Cp(H)¢/(nd/4)=0.01-1.0, where
C)p is the coefficient of mean cylinder drag, that wake production exceeds production
due to shear within the cylinder array, except near the bed. In fully developed flow
with negligible shear production, the turbulent kinetic energy budget reduces to a
balance between wake production and viscous dissipation of turbulent kinetic energy
(e.g. Burke & Stolzenbach 1983; Raupach & Shaw 1982):

1" 8?” 814'/814‘/
O~ —{(uu, — ) — L), 2.5
<M,MJ an > Y <8xj an > ( )
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Similarly, the mean kinetic energy budget reduces to

0~ <’/Tz>flfmm + W”aui + V<I/T,'NV2LTI'”>, (26)
J 3)(]'
where
1
g = [ [ nds o @7)
pVy S.

is the hydrodynamic force per unit fluid mass exerted on S, that arises from the
pressure loss in cylinder wakes, where S, denotes all cylinder surfaces that intersect
Vs, n is the unit normal vector on S, pointing out of V;, p(x, t) is the local pressure
and p is the fluid density.

The Kolmogorov microscale n estimated from our laser Doppler velocimetry (LDV)
measurements (see §3) ranged from 7n/d =0.0014 to n/d =0.21 and n/{s,)» =0.0036
to n{s,)4» =0.83. These 0(0.001-1) ratios suggest that wake production is a more
significant sink of mean kinetic energy than the viscous term v(u;”"V?u;”) (Raupach &
Shaw 1982). For simplicity, the latter is neglected in (2.6), which yields a balance
between the rate of work done by form drag and wake production (Raupach & Shaw
1982, equation 17):

0~ () f/™ + <u;u’,”8”i > . (2.8)

3Xj
Note that i =1 is the only non-zero component of (i;) f/™". Combining (2.5) and

(2.8) and replacing the viscous dissipation term with the classic scaling, \/17,3/ [,
(Tennekes & Lumley 1972), yield a model for mean turbulence intensity:

£ \form 2 1/3
o\ [ L _md ] 9)
(i) plu)*d/2d2(1 — ¢)

where (fp)°™ = p(1 —¢)f]"™/m is the inertial contribution to the mean drag (in the

direction of mean flow) per unit length of cylinder. Tanino & Nepf (2008, d =0.64 cm)
determined the following empirical relation for {f)™, the depth average of ()™

7 \form
;fg’fg/z = 2[(0.46 +0.11) + (3.8 4 0.5)¢] . (2.10)

For convenience, we define a drag coefficient that represents this contribution:

form __ <E>"2"m

P pUd)2

(2.11)

Laboratory measurements suggest that temporally and spatially averaged flow
properties in Tanino & Nepf (2008)’s laboratory experiments and in the present
study were approximately uniform vertically (e.g. figure 8; White & Nepf 2003) and
laterally (e.g. figure 7; White & Nepf 2003). Consequently, (fpV*™ ~ (fp)Yo™ and
() ~ U,. Then, (2.9) can be rewritten as:

) = ()~ et "
GG = (o)~ b b=mr) 21

where C[™ is described by (2.10) and (2.11). Recall that m = ¢/(nd?/4).
The choice of [, =d is the convention in the literature on flow through vegetation
(e.g. Raupach & Shaw 1982; Raupach et al. 1991) and is reasonable in sparse arrays
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FIGURE 2. A section of simulated arrays of (a) ¢ =0.010, d < (s,)4 and (b) ¢ =0.20, d > (s,) 4.
Circles represent cylinders, to scale. Turbulent eddies, depicted by the arrows, are O(d) in
sparse arrays, but are constrained by the local cylinder separation where the pore length scale
is smaller than d.

(figure 2a). In dense arrays, however, the local pore length scale may be less than
O(d). In these regions, physical reasoning suggests that the local cylinder spacing
will constrain the eddies (figure 2b). Therefore, [, must be redefined at high ¢. The
simplest function consistent with the expected dependence on the local surface-to-
surface distance between cylinders is

I, = min{d, (s,)a}. (2.13)

2.2.2. Turbulent diffusion coefficient

We expect the spatially heterogeneous velocity field to induce lateral deflections of
O(d) per cylinder in the dispersion mechanism described in §2.3 (e.g. Masuoka &
Takatsu 1996; Nepf 1999). Therefore, we propose that only turbulent eddies with
mixing length scale I, > d contribute significantly to net lateral dispersion relative to
the spatially heterogeneous velocity field. Let »* be the minimum distance between
cylinder centres that permits the pore space constrained by them to contain such
eddies. Physical reasoning suggests that the mixing length scale associated with
turbulent eddies is approximately equal to the size of the eddies, i.e. [, ~[,, which,
together with (2.13), implies r* — d =d. Then, within an infinitesimally thin section
of the array whose total (solid and fluid) volume is denoted by V, the sum of all
volume that contributes to turbulent diffusion, V,, (< V), is a sum of all pore space
with length greater than r* — d. Within these pores, [, =d. To simplify, we associate
all fluid volume with a cylinder. Farther, each cylinder in the array has a fluid volume
around it of characteristic horizontal area s2. Then,

Vm = <S721>xm>r*NYm‘>r*’ (214)

where N, ., is the number of cylinders with s, >r* in V. Recall that s,. =s, + d.
To define K,, as an average over both fluid and solid volume, local \/kjl(,, is

integrated over V,, and divided by V. Then, the contribution from turbulent diffusion
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is

K, kile)m Vi
=y <\/j ) —, (2.15)
(w)d (wyd VvV
where ( ), denotes a spatial average over V,, and y; is the scaling constant.
Equation (2.15) is simplified by neglecting the cross-correlations such that

(Vkile)m = (ki) m(le)m and assuming that (\/k;). = (\/k;), the average over all fluid
volume. Equation (2.15) then becomes

Kyy \/kj <sz>s ->r* ¢
i — = Py, 21
= () (216

where P, ., =N, ., /(mV) is the fraction of cylinders with a nearest neighbour
farther than r* (centre-to-centre) from its centre. Recall that (\/k/(&)) can be
described by (2.12) and (2.13), given d and ¢.

2.3. Contribution from the time-averaged, spatially heterogeneous velocity field

Two existing models of lateral dispersion due to the spatially heterogeneous velocity
field are considered in this paper. The simplest model describes the lateral deflection of
fluid particles due to the presence of the cylinders as a one-dimensional random walk
(Nepf 1999). In this model, a fluid particle is considered to undergo a sequence
of independent and discrete lateral displacements of equal length, where each
displacement has equal probability of being in the positive or in the negative y
direction. The long-time lateral dispersion of many such fluid particles is described
by:

Ky, 1 /eN?2 ¢
(wyd 2 (d) n/4’ @17
where €, the magnitude of each displacement, is a property of the cylinder
configuration and Re,. Nepf (1999) proposed that € =d. With this assumption, (2.17)
becomes a function of ¢ only.

The second model considered for this mechanism is Koch & Brady (1986)’s
analytical solution for mechanical dispersion due to two-cylinder interactions in
Stokes flow, with a modification to only include cylinders with a nearest neighbour
sufficiently close to permit cylinder—cylinder interaction. Analytical solutions for long-
time Fickian dispersion in a homogeneous, sparse, random cylinder array were derived
for Stokes flow by Koch & Brady (1986) by averaging the governing equations over
an ensemble of arrays with different cylinder configurations. Neglecting molecular
diffusion, lateral dispersion arises from the velocity disturbances induced by the
randomly distributed cylinders (Koch & Brady 1986). The authors demonstrate
that this hydrodynamic dispersion consists of a mechanical component and non-
mechanical corrections, but that only the mechanical contribution, associated with
the spatially heterogeneous velocity field due to the obstacles, has a non-zero
lateral component. Farther, the authors showed that, because of their fore—aft
symmetry, circular cylinders do not contribute to lateral dispersion unless two-
cylinder interactions are considered. Taking into consideration such interactions,
Koch & Brady (1986) determined that the mechanical contribution of the cylinder
array in Stokes flow is

2N\ 3/2 _
Ky _ T <d> 1=¢ (2.18)

@d 4096 \ k. o7
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where k, is the permeability such that the mean drag (in the direction of mean flow)
per unit length of cylinder is

_ nd> _ 1—¢

<fD> = 4kLM<u> o
where w is the dynamic viscosity. Numerical simulations show that d?k7! increases
monotonically with ¢ (Koch & Ladd 1997). For sparse random arrays, k, is accurately
described by Spielman & Goren (1968)’s analytical solution (B 1). For dense arrays,
Koch & Ladd (1997) have shown that a theoretical model based on the lubrication
approximation accurately captures the dependence of k; on the characteristic distance
between neighbouring cylinders. The permeability k; for arrays of intermediate
density, for which analytical expressions have not been derived, can be described
by an empirical fit to numerical simulation data (B 3). Models for k, relevant to our
laboratory experiments are discussed in Appendix B.

Equation (2.18), where k; is described by (B 1), predicts that dispersion due to
two-cylinder interactions will increase as ¢ decreases below ¢ =0.017. Koch & Brady
(1986) attribute this predicted increase to the increase in the average distance over
which velocity disturbances induced by a cylinder decay. This distance, known as the
Brinkman screening length, scales with the square root of permeability. As discussed
in Appendix B, \/k ~ (s,)4 in sparse arrays. However, the fraction of cylinders with
a neighbour close enough to result in cylinder—cylinder interaction decreases with
decreasing ¢, and physical reasoning suggests that the contribution from this process
approaches zero as ¢ decreases to zero. Therefore, we introduce an adjustment to Koch
& Brady (1986)’s solution. Previous studies in unsteady and turbulent flow report
interacting wakes between side-by-side cylinders with a centre-to-centre distance less
than 5d (e.g. Zhang & Zhou 2001; Meneghini et al. 2001). Similarly, the drag on
a cylinder is influenced by the presence of a neighbouring cylinder that is within
5d (Petryk 1969). Following these studies, we assume that only cylinders whose
centres are within 54 of another cylinder centre contribute to net dispersion through
this mechanism. Accordingly, Koch & Brady (1986)’s solution is multiplied by the
fraction of cylinders that have a nearest neighbour within 5d, P;_.s;. We assume
that this process is otherwise unaffected by inertia. In addition, a scaling constant
y, 1s introduced. After the introduction of these two terms, Koch & Brady (1986)’s

solution becomes 32
K, n (d? 1—¢
L (o ] 2.20

@y ~ 4096 (kl ¢ 22

(2.19)

2.4. Coefficient for net lateral dispersion

Finally, an expression for net lateral dispersion is given by the linear superposition of
the models for turbulent diffusion and dispersion due to the spatially heterogeneous
velocity field. For example, superposing (2.16) and the proposed modification of
Koch & Brady (1986)’s solution (2.20) yields

K, 4 k ) e o (d*\1—
Y = Y ¢ <\/>l> Psn(.>r*L + VZPsn(.<5d7 ( > J (221)

@d ~ 'n"\ () d? 4096 \ k, P2

To permit an analytical expression for (2.21), P, ., and P;__s; are approximated
as the probability that a single cylinder in a random array will have a nearest
neighbour farther away than » =r" and within r = 5d, respectively, where r is the radial
coordinate defined with the origin at the centre of that cylinder. Analytical expressions
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FIGURE 3. A photo of a section of the model ¢ =0.27 array in plan view.

for P, ., P, <54 and (s,%>Y -~ for the random arrays used in the present laboratory
experiments are derived in Appendix A. Note that P, s, approaches 1 monotonically
as ¢ increases from zero, with P;__s;,>0.99 at ¢ > 0.043. Expressions for k, are
presented in Appendix B.

3. Experimental procedure

Laboratory experiments were conducted to verify the definition of /; (2.13) and the
scale model for (\/k,/(@)) (2.12) and to document the ¢ dependence of K,,/({i)d).
Scaling constants in (2.12) and the model for K, /({#)d) (2.21) were determined from
the experimental data.

The laboratory study consisted of two parts: measuring velocity and imaging the
lateral concentration profile of a passive tracer. In both parts, cylindrical maple
dowels of diameter d =0.64 cm (Saunders Brothers, Inc.) were used to create arrays
of eight densities: ¢ =0.010, 0.020, 0.031, 0.060, 0.091, 0.15, 0.20 and 0.35 for the
velocity measurements and ¢ =0.010, 0.031, 0.060, 0.091, 0.15, 0.20, 0.27 and 0.35
for the tracer study. All arrays, except for the ¢ =0.031 arrays, were created in
custom-made 71.1cm x 40.0cm perforated polyvinyl chloride (PVC) sheets of either
20% or 35% hole fraction. The locations of the holes in these sheets were defined
by generating uniformly distributed random coordinates for the hole centres until the
desired number of non-overlapping holes was assigned; these non-overlapping holes
were drilled into the sheets. Here, “non-overlapping” holes were defined to have no
other hole centre fall within a 2d x 2d square around their centres. Any directional
bias resulting from this definition, instead of defining the overlap over a circle of
radius d, is assumed negligible. The ¢ =0.20 and 0.35 arrays were created by filling
all of the holes. The ¢ =0.010, 0.020, 0.060, 0.091, 0.15 and 0.27 arrays were created
by selecting the holes to be filled or to be left empty using MATLAB’s random
number generator. The ¢ =0.031 array in the tracer study was created by partially
filling 20% hole fraction PVC sheets with 1/2-inch staggered hole centres (Ametco
Manufacturing Corporation). The ¢ =0.031 array used in the velocity measurements
were created by partially filling Plexiglas boards that were designed by White & Nepf
(2003). Note that White & Nepf (2003) defined non-overlapping holes to have no
other hole centre fall within a concentric circle of diameter 4d. In the tracer study,
the dowels were inserted into four PVC sheets placed along the bed of the working
section of the flume. A plan view of a section of the ¢ =0.27 array is presented in
figure 3. For the velocity measurements, different numbers of PVC sheets were used
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¢ array base  d/(s,)a  array length [cm] AXgqy [cm] n
0.010 PVC 0.28 569.0 0.0 118
0.020 PVC 0.43 497.8 0.0 147
0.031 Plexiglas 0.49 498.8 0.0 261
0.060 PVC 0.93 284.5 0.0 260
0.091 PVC 1.3 284.5 0.7-1.3 191
0.15 PVC 2.0 2134 0.0 195
0.20 PVC 2.7 213.4 0.0, 0.1 136
0.35 PVC 59 106.1 0.3, 0.6 116, 22

TaBLE 1. Array setup for LDV measurements. Axg,, is the width of the gap that was
created in the cylinder array to permit multiple LDV measurements in each lateral transect.
AXxgqp =0.0 indicates an unmodified array. n is the total number of time records collected at
Re; =Ups/v > 250 (¢ =0.010-0.20) and both Re; > 200 and Re,; > 250 for ¢ =0.35.

(see table 1) because the density of cylinders increases with ¢ and a shorter array
length is required to achieve fully developed conditions at higher ¢. The cylinders are
perpendicular to the horizontal bed of the working section of the flume.

As stated previously, velocity measurements taken in emergent cylinder arrays by
White & Nepf (2003) and in the present study (e.g. figures 7 and 8) have shown
that (u) is approximately constant within the array, except very close to the bed
and the sidewalls. Therefore, (#) is approximated by U,, measured as the time-
averaged volumetric flow rate divided by the width of the working section, (H) at
the measurement location, and 1 — ¢. Similarly, Reynolds numbers were calculated
using U, as the velocity scale.

3.1. Velocity measurements

Velocity measurements were taken in a 670cm x 20.3cm x 30.5cm recirculating
Plexiglas laboratory flume using two-dimensional LDV (Dantec Measurement
Technology). The time-averaged water depth at the LDV sampling volume ranged

from (H)=13.1cm to (H)=22.1cm. Flow was generated by a centrifugal pump and
measured with an in-line flow meter. At each ¢, time records of longitudinal and
vertical velocity components were collected at positions (s +d)/4 apart along a lateral
transect at several streamwise positions within the array for a range of Re,. The
lateral transects were at an elevation of 2(H)/3 from the bed.

In total, 2107 time records were collected. The time average (%, w), the temporal
deviations (u’, w’) and the variance (1’2, w'?) were calculated for each record as

Z up Aty
k
Z Aty ’
k

up =up —u (3.2)

(3.1)

ﬁ:

and

u? = A (3.3)
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respectively, where At is the residence time of the kth seeding particle in the LDV
sampling volume. The vertical components are defined analogously. Note that only
u(t) and w(r) could be measured. However, previous measurements indicate v ~ u'?
(Tanino & Nepf 2007), and the turbulent kinetic energy per unit mass, k,, was
determined as k, = (2u? + w’?)/2.

The integral length scale /, can be estimated from the time record of turbulent
fluctuations. Specifically, [u|/(27 fpeak.v,)s Where fpeak.o, 18 the frequency at which the
frequency-weighted power spectral density of v, peaks, is approximately equal to the
Eulerian integral length scale (Kaimal & Finnigan 1994, p. 38) and is one measure of
I; (e.g. Pearson, Krogstad & van de Water 2002). To determine fea v, #'(¢) and w'(¢)
records were resampled at uniform time intervals by linear interpolation. The shortest
interval between consecutive samples in that time record was used as the interval.
The power spectral densities [cm? s Hz~!] of the reevaluated u'(t) and w'(¢) were
determined using MATLAB’s pwelch.m function. A peak at 120 Hz exists in most
records, which is attributed to background noise. Because this frequency is one order
of magnitude higher than the maximum U,/d and U,/s in our experiments, which
were 15Hz and 30 Hz, respectively, it is assumed that this noise did not interfere
with the analysis. Also, the resampled record is accurate only to f = f..,/(21),
where f,,, is the mean data rate of the raw time record (Tummers & Passchier
2001). Accordingly, frequencies above f,,, and 110 Hz were neglected in the analysis.
Finally, /, was estimated from the frequency fpe. . corresponding to the peak in the
frequency-weighted power spectral density of the resampled u'(¢) as

|u]

ll’eak,u = 27Cfpeak,u . (34)
The vertical length scale, /.4, Was determined from the power spectral density of w’
analogously. Of a total of 1317 .., measurements at Re, > 250, ten were discarded
because they differed from the mean [,.q, for that ¢ by more than three standard
deviations and three were discarded because a peak could not be identified in the

frequency-weighted spectrum.
Alternatively, [, can be estimated from the autocorrelation function of the local

velocity fluctuation as
0 ’(t)u’(t+r)
o =] [ . (35)

where 7 is the time lag with respect to ¢+ and 1 is t at the first zero-crossing.
MATLAB’s xcov.m function was used to calculate the variance-normalized auto-
correlation function of each resampled u'(¢) record, from which the Eulerian integral
length scale 1., (3.5) was calculated. Of a total of 1290 time records at Re; = 250
for which /.., could be computed, 22 were discarded because the calculated /..,
deviated from the mean for that ¢ by more than three standard deviations.

The spatial heterogeneity of the velocity field is quantified by the variance of
i’ =u(t) — U, (e.g. White & Nepf 2003),

Gg%’ ﬁuz T 2
5= ()~(w) o
P P p

Specifically, measurements of u for each ¢ were separated into five or six groups
based on U,. For each (¢, U,) group, /U 13 and the maximum and minimum Re,
were computed.
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FIGURE 4. Sensitivity of (a) (/U,), (b) (W/U,), (¢) w?/U}), (d) (w?/U3), (€) (lpeak.u)/d and
(f) {peak,w)/d, as defined by (3.1)—(3.4), to Axgy, the width of the gap in the array at the
sampling locations. Ten or eleven time records were collected at lateral intervals of (s + d)/2
along a single lateral transect in a ¢ =0.20 array for each Ax,,,. Dots represent the local values
and open markers represent the lateral average over each transect. Re; =430-480 (circle) and
Re;, =470-540 (square). Vertical bars indicate the standard error of the mean.

Except in the sparsest arrays, measurements could not be collected across the
entire width of the flume because cylinders obstructed the LDV laser beams. To
permit sufficient sampling positions along each transect, gaps of normalized width
Axgap/(Sn)a =1.4-2.7, 0.0-0.4 and 3-6 were created in arrays of ¢ =0.091, 0.20 and
0.35, respectively (table 1). To determine whether these gaps biased the results, velocity
time records were collected along a lateral transect in a ¢ =0.20 array for a range
of Axgqp, from which lateral averages of @/U,, W/U,, u?/U;, w?/U}, lpearu/d and
Lpear,w/d were calculated for each transect. The lateral averages, with the exception
of (W/U,) and (w?/U,), remained within standard error of their respective values at
Axgqp/(sn) 4 =0.2 in the range Axy,,/(s,)a =0.2 to 8.1 + 0.4 (figure 4). The constant
values suggest that our results were not biased by the gaps.
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The duration of measurement at a single position was determined from the time
taken for the time average and the variance, as defined by (3.1)—(3.3), of preliminary
velocity time records to converge to within 5% of their 20-minute average. This test
was performed for each ¢ for several Re;. The duration varied from 60s to 1000s,
with lower Re, generally requiring a longer time to converge.

3.2. Tracer experiments

Laser-induced fluorescence (LIF) was used to measure the lateral dispersion coefficient
in a recirculating Plexiglas laboratory flume with a 284cm x 40cm x 43 cm working
section. LIF measurements could not be collected in the same flume as the LDV
measurements because the seeding material used in the latter would have interfered
with the former. The use of the two flumes is justified because the spatially averaged
turbulence characteristics are determined by the macroscopic array properties and
are not specific to the flume system, as demonstrated by the good agreement in mean
turbulence intensity and /.. ./d observed by White (2002) and in the present study
(figures 12 and 15).

Dilute rhodamine WT was injected continuously from a horizontal needle with
a syringe pump (Orion Sage™ M362) at a rate that was matched visually with
the local flow. A single horizontal beam of argon ion laser (Coherent INNOVAR
70 ion laser) passed laterally through the flume at a single streamwise position x
downstream of the tracer source. A Sony CCD Firewire digital camera XCD-X710
controlled by Unibrain Fire-i 3.0 application captured the line of fluoresced tracer
from above the flume in a sequence of 1024 x 48 bitmap images. To filter out the
laser beam, 530 nm and 515 nm long-pass filters (Midwest Optical Systems, Inc.) were
attached to the camera. The fluorescence intensity is proportional to the rhodamine
WT concentration. The correct spatial scale on the images was determined from a
photo of a ruler submerged horizontally in the position of the laser beam. The image
of the ruler was taken every time the local water depth, the camera setting or the
position of the laser beam or the camera changed. At high ¢, cylinders were removed
to create the 1.3-cm gap in the array necessary to insert this ruler. This gap also
ensured that the laser beam could pass through the entire width of the flume. The
position of the laser beam relative to the tracer source, which was restricted by the
distance at which the tracer reached the sidewalls, ranged from x =5cm to x = 143 cm.
The time-averaged water depth at the longitudinal position of the laser beam ranged
from (H)=9.1cm to (H) = 18.6 cm. Additional details of the experimental procedure
are provided in Tanino & Nepf (2007).

Instantaneous intensity profiles were extracted from the bitmap images, corrected
for background and anomalous pixel intensities and averaged over the duration of
the experiment to yield a time-averaged intensity profile, /(y, t). The time-averaged
profile was corrected for noise and background. Then, its variance was calculated as

2o My(x) M)
o’(x) = Mor) {Mo(x)] : (3.7)
where M;(x) is the jth moment,
M = [T dy. (38)

The zeroth, first and second moments and the corresponding o were calculated by
setting the limits of integration in (3.8), « », at the two edges of the images. Next, « »
were redefined as «y, =(M;/M,) £+ 30 and the calculation was repeated. These limits
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were applied to prevent small fluctuations at large distances from the centre of mass
from altering the variance estimate dramatically.

Previous evaluation of the experimental data determined that, within the range of x
considered in the present experiments, o at constant x increases with pore Reynolds
number until Re; ~ 250 and is constant at higher Re, (Tanino & Nepf 2007, figure 4).
In this study, we focus on Reg > 250. The net lateral dispersion coefficient normalized
by U, and d for each ¢ was calculated as

Ky _ 1 do?
Ud 2d dx’

(3.9)

where do?/dx is the gradient of the line of regression applied to all 0> measurements
at Re; > 200 for ¢ =0.35 and at Re, > 250 for all other ¢. The criterion for ¢ =0.35 is
lower because the experimental setup could not accommodate the large longitudinal
free surface gradient that results from the cylinder drag (Tanino & Nepf 2008) at
Re, > 250.

(JVki/U,) and K,,/(U,d) at each ¢ were calculated as the gradient of the line
of regression of /k, on U, and of o on x normalized by 2d, respectively. The
uncertainty in the gradient of each line of regression was estimated according to
Taylor (1997, chapter 8). Consider the line y = By + Bix that best fits n data points
(xk, yx), k=1,2,...,n in the least-squares sense. The uncertainty in Bj is defined as
(Taylor 1997, equations 8.12, 8.15, 8.17)

1
n—2

n
n n 20
n E xi— E Xk
k=1 k=1

The uncertainties in (,/k,/U,) and do?/dx are calculated as (3.10). The uncertainty
in K,,/(U,d) is simply the uncertainty in do?/dx divided by 2d.

> Iy — (Bo + Bixi)? (3.10)
k=1

4. Experimental results
4.1. Flow visualization

We first consider the qualitative Reynolds number dependence. Figures 5 and 6 present
unprocessed still photos taken in the ¢ =0.010 and 0.15 arrays, respectively, at four
different Re,. Recall from §2 that Re, is the Reynolds number based on d instead
of s, i.e. Rey= Red/s. In figure 5, fluorescein solution was injected approximately
3.7cm upstream of cylinder A. The injection point is visible at the top of the images
in figure 6. The tracer emerges from the needle as a single distinct filament for all
Rey. In figure 6(a), the tracer is deflected by the cylinders and is advected through
the array forming a streakline that is stationary in time. The flow is unsteady for all
other conditions presented in figures 5 and 6 and, consequently, the angle at which
the tracer encounters cylinders A and B in figure 5 and cylinder A in figure 6 varies
with time. In both arrays, the Re, dependence is qualitatively the same. The tracer
forms distinct, thin (<d) bands of dyed and undyed fluid at Re; ~ 30 (figures 5a and
6a). At higher Re,, turbulent eddies rapidly mix the fluid within the pores, resulting
in a more spatially uniform distribution. For example, distinct filaments cannot be
distinguished at the bottom of the image in figures 5(d) and 6(d).

The ¢ =0.010 array is sufficiently sparse that individual vortex streets and their
interactions can be identified. A laminar vortex street is seen behind cylinder B at
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FiGUure 5. Flow visualization by fluorescein and blue lighting in a ¢ =0.010 array at the
following values of Rey: (a) 28 £ 1, (b) 56 + 3, (¢) 78 £ 3 and (d) 113 £ 5. These values
correspond to Re; =220 + 10, 430 £ 20, 600 4+ 20 and 880 + 40, respectively. Mean flow is
from top to bottom. Camera and dye injection position were fixed. The injection point is
approximately 3.7 cm upstream of cylinder A.

®)

(@

(b

(d)

FIGURE 6. Flow visualization by fluorescein and blue lighting in a ¢ =0.15 array at the
following values of Re;: (a) 32+ 2, (b) 73+ 3, (c) 108 £ 4 and (d) 186 + 7. These values
correspond to Re; = 42+ 2,94+ 4, 139 + 6 and 240 + 9, respectively. Mean flow is from top
to bottom. Camera and dye injection position were fixed.
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FIGURE 7. Lateral transects of #/U, (solid line) and /k,/U, (grey, dashed line) at (a) ¢ =
0.010, Rey;=620-690 (dot), 1600-1700 (x), 2400-2600 (A), 2700-2900 (square), and
3100-3300 (+) and at (b) » =0.15, Re;, = 130-140 (dot), 400-430 (+), and 510-600 (*). Flume
sidewalls were at y =0 and 32.0d.

Re, =284+1 (figure 5a). In contrast, a pair of standing eddies are attached to cylinder
A in the same image. Here, tracer emerges O(d) downstream of the cylinder as a
single, straight filament. The difference between the wakes of cylinders A and B can
be attributed to differences in the local flow conditions due to the random nature
of the cylinder distribution. At an isolated cylinder, standing eddies form at Re; =~ 5
and become unsteady at Re; ~40 (Lienhard 1966). In figure 5(a), Re; =28 + 1, and
an isolated wake is expected to be steady. The presence of neighbouring cylinders
may have elevated the local Re, such that flow around cylinder B enters the unsteady
regime. Figure 5(a) also highlights the interaction of the wakes. The single tracer
filament leaving cylinder A is drawn into the vortex street of cylinder B as it
propagates downstream. At Re, =78 + 3, cylinders A and B both shed vortices
(figure 5c). Moreover, the shedding is in phase, indicating wake interaction. Here,
the centre-to-centre distance between cylinders A and B is approximately 4d, and the
occurrence of wake interaction is consistent with (2.20). The vortex street from the
two cylinders appears to merge and form a single turbulent street at approximately
x ~ 15d. This is consistent with Williamson (1985)’s observations of in-phase vortex
shedding behind a pair of side-by-side cylinders. A similar merging of vortex streets
can be identified downstream of four cylinders in a square configuration at a 45°
angle to the flow (Lam, Li, Chan & So 2003, figure 9, Re, =200).

4.2. Velocity and turbulence structure

Local velocity varies dramatically in the horizontal plane due to the random
configuration of the cylinders. This is highlighted in figure 7, in which each subplot
presents lateral transects of time-averaged and turbulent components of velocity at
a single longitudinal position. For example, the time average of the longitudinal
component of velocity (#) deviates dramatically from its cross-sectional average (U,)
at all ¢ and Re,. Indeed, u is negative at certain positions in the array because of
recirculation zones that develop immediately downstream of a cylinder (figure 7b).
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FIGURE 8. Vertical profiles of (a) /U, and (b) \/k,/U, at four positions, 1.0d apart, along a
lateral transect (x). The lateral average of the four profiles is presented as a thick solid line.
Horizontal bars reflect the uncertainty in U,. ¢ =0.20, Re; =440-490, (H) =17.3-17.4cm.

A comparison of lateral profiles at different Re; at the same position in the array
indicates that the shape of the lateral profiles remains constant as Re, varies (figure 7),
confirming that the spatial variability is largely dictated by the cylinder configuration.
Because the array is vertically uniform, vertical variations in the time-averaged velocity
and turbulence intensity are expected to be smaller than their lateral heterogeneity.
In particular, spatial averages (#/U,) and (\/k,/U,) are approximately uniform in
depth (solid lines in figure 8). Similar observations were made in random arrays of
¢ =0.010, 0.020 and 0.063 by White & Nepf (2003). Finally, note that the spatial
variability is smaller in figure 7(a) (¢ =0.010) than in figure 7(b) (¢ =0.15). Indeed,
07,/ U; increases with ¢, as illustrated in figure 9 for mean Re, = 340-440.

Like u and \/l?,, the power spectrum and the autocorrelation function vary
dramatically in the horizontal plane. The frequency-weighted power spectral density
and the autocorrelation function of selected u'(¢) records are presented in figure 10
for reference.

The two methods for estimating the integral length scale yield similar values, as
expected (figure 11). Therefore, only (lpeux,./d) is compared with /, here (figure 12).
The measured integral length scale generally decreases with increasing d/(s,)4, as
demonstrated by (/,.q../d), where the spatial average was calculated as the mean
of all LDV measurements at Re; = 250 at each ¢. Equation (2.13) captures this
decrease of (lpear./d) reasonably well for d/(s,)4 = 1.3. As expected from (2.13),
the mean of (/e u/d) for d/(s,)a <0.5 is 1.0. However, (/,cq./d) decreases with
increasing d/(s,) 1 below d/(s,)4 =1 in both the present study and in White (2002)’s
experiments. Additional measurements are necessary to verify (2.13) for d/(s,)1 < 1.

The mean turbulence intensity at a given ¢, (\/k,/U,), is calculated as the gradient
of the line of regression of all LDV measurements of \/kj on U, for Re;>250
at ¢ <0.35 and for Re; > 200 at ¢ =0.35. The Re; ranges match those for which
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FIGURE 9. Normalized spatial variance of u”, o2, /U;, for mean Re,=340-440: (¢, Rey) =
(0.010, 410), (0.020, 360), (0.020, 410), (0.031, 390), (0.060, 390), (0.15, 340), (0.20, 430), and
(0.35, 430). Two sets of anz,,/Ul% were calculated from (3.6): one using the upper estimates of
U, and the other using the lower estimates. The ends of the vertical bars reflect these two
estimates; the marker is their mean.
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FIGURE 10. The frequency-weighted power spectral density (cm?s~2) (left) and the variance-

normalized autocorrelation function (right) of selected u’ time records: (a) ¢ =0.010, u=
3.8cms™!, Re;, =2700, (b) ¢ =0.20,u = —1.4cms™!, Re; =320 and (c) ¢ =0.35,u=4.9cms!,
Re; =380. Arrows mark the identified peak in the frequency-weighted power spectral
density (left) and 7y (right). f denotes frequency.
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FIGURE 11. Comparison of /e, (3.4) and lcorr, (3.5) determined from LDV measurements
at Rey; > 250 and ¢ =0.010 (*), 0.020 (star), 0.031 (-), 0.060 (<>), 0.091 (+), 0.15 (square),
0.20 (x), and 0.35 (circle).
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FIGURE 12. l,eq,u/d as defined by (3.4) (dots) for LDV measurements at Re;, > 250. Circles
mark the mean and vertical bars represent the standard error of the data from the present study
for each ¢. The solid line is (2.13). There are data points at (d/(sa)a, [ peak.u/d) =(0.49, 5.34)
and (2.0, 13.6) which are not visible in the figure but are included in the calculation of the
mean. White (2002)’s ADV measurements for Re; > 250 are also included (dots) with their
mean (x) and standard error (power spectral density data provided by B. L. White, personal
comm.).

K,,/(Upd) is calculated, as discussed in §3.2. The observed correlation is
highly significant for all ¢ (table 2), indicating that (,/k,/U,) is independent of Re,
under these conditions. The ,/k, measurements and the corresponding line of best
fit for ¢ =0.020 and 0.35 are presented as examples in figure 13. Despite the large



358 Y. Tanino and H. M. Nepf

¢ Line of regression of \/k, on U, R n
0.010 (0.07 £0.06) 4 (0.21 £ 0.02)U,, 0.77 118
0.020 (0.06 £0.04) 4 (0.26 £ 0.01)U,, 0.88 147
0.031 (0.024£0.05) 4+ (0.30 £ 0.01)U, 0.81 261
0.060 (—=0.04+0.1) +(0.38 £ 0.02)U,, 0.73 260
0.091 (0.1 £0.1)4+(0.37 £ 0.02)U, 0.80 191
0.15 (0.0 £0.3) 4+ (0.43 £ 0.05)U,, 0.53 195
0.20 (0.34+0.5)4+(0.47 £0.09)U, 0.43 136
0.35 (0.4+£0.7) 4+ (0.52 £ 0.10)U,, 0.44 116

TaBLE 2. The equation of the least-squares fit to data at mean Re; > 250 (¢ =0.010-0.20) or
at mean Reg > 200 (¢ =0.35). R is the correlation coefficient and » is the total number of data
points included in the regression. See table 1 for the corresponding d/(s,) .
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FiGure 13. All LDV measurements of /k; for ¢ =(a) 0.020 and (b) 0.35. Each dot represents
a single time record at one location within the array and the associated U,. The solid line in
each subplot is the least-squares fit to all data in the range (a) Res; > 250 and (b) Re; > 200.
See table 2 for the equations for the fitted lines.

spatial heterogeneity in individual (local) \/kT/ U, estimates, their spatial average
increases monotonically with ¢, within uncertainty (figure 14).

The scaling constants for the turbulence intensity scale (2.12) were determined by
least-squares fitting (2.12), with [, defined by (2.13), to the <\/l7, /U,) measurements
presented in figure 14. The data point at d/(s,), =0.93 was excluded from the fitting
because it is near the expected transition in [;, i.e. d/(s,), =1. Farther, to avoid
discontinuities in the model predictions, we will assume that the transition between
the two regimes occurs at d/(s,)4 =0.56, where the two functions intersect, i.e.

orm (Sn
0.88 |:CfDmm< >A ¢

JE\
()=
d (1 —¢)N/2} ’

where C2™ is described by (2.10). The theory accurately captures the ¢ dependence
of the measured (/k;/U,) for both d/(s,)1 <0.49 and > 1.3 (figure 14). Note that the
measurement at d/(s,). =0.93 falls between the extrapolation of the two expressions
in (4.1), suggesting transition effects.

1 |:C}£i))rm(1;$5)n/2:| "’ , d/<sn>A < 0.56
, 4.1)

d/{sy)a = 0.56
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FIGURE 14. The gradient of the line of regression of \/k; on U, at Re, > 250 for ¢ <0.35 and
Reg > 200 for ¢ =0.35 from the present study only. Vertical bars represent the uncertainty in
the gradient as defined by (3.10). Solid lines are (4.1); the empirical fits are extrapolated over

orm

the range of the data set (dashed). Dotted lines reflect the uncertainty in Cj,; : the lines are

(2.12) with the upper and lower estimates of C/™ in (2.10) and the corresponding best-fit
scaling constants 0.84 and 0.94 for I, = (s,)4 and 1.0 and 1.2 for [, =d, respectively.

Field measurements by Neumeier & Amos (2006), Nikora (2000) and Leonard &
Luther (1995), presented in figure 15, fall within the range of \/IZ /U, observed in the
present study. To the authors’ knowledge, these are the only field reports in which both
turbulence measurements and stem density are presented for emergent plant canopies.
The (\/k;/U,) calculated from White (2002)’s three-dimensional acoustic Doppler
velocimeter (ADV) measurements are also presented in figure 15 for comparison. The
good agreement between (4.1) and laboratory data suggests that mean turbulence
intensity at high Re, can be predicted in random cylinder arrays from d/{s,) 1, ¢, and

ng)rm'
4.3. Net lateral dispersion

The assumption that net lateral dispersion is Fickian is confirmed by the linear
increase of o with x observed at all ¢ (e.g. figure 16). In addition, Tanino & Nepf
(2007, figure 4) have shown that o> measured at a fixed longitudinal distance from
the source becomes independent of Re, at Re, > 250. Consequently, do?/dx is also
independent of Re; at Re; > 250 (e.g. figure 16).

The normalized net lateral dispersion coefficients K,,/(U,d) are presented in
figures 17 and 18 and in table 3. The figures include measurements at ¢ =0 reported
by Nepf et al. (1997, table 1). Three distinct regimes can be identified in the figures. In
the sparse array, K ,,/(U,d) increases rapidly as ¢ and d/(s,) 1 increase. In the present
laboratory study, this regime extends from d/{s,)4 =0 to d/{s,)4 =0.58 (¢ =0-0.031).
In the intermediate range, K,,/(U,d) decreases as ¢ increases. This regime extends
from d/(s,)» =0.58 to d/{s,)a =2.7 (¢ =0.031-0.20) in our arrays. Finally, in the
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FIGURE 15. ((/k;/U,) calculated from LDV measurements collected in the present study (O)
and from White (2002)’s measurements at ¢ =0.010, 0.020 and 0.063 (x) (lateral profiles

of \/172 m Vw? and u were provided by B. L. White, personal comm.). Vertical bars
represent the uncertainty in the gradient as defined by (3.10). Field measurements of \/kj /Up
in emergent plant canopies by Nikora (2000, A), Leonard & Luther (1995, +), and Neumeier
& Amos (2006, unpublished values and details provided by U. Neumeier, personal comm.,

rectangle) are also plotted. U. Neumeier provided eight depth profiles of (\/ﬁ, \/172 Vw?)
in emergent canopies, but only the profile where the estimated wind-induced horizontal and
vertical wave speeds were less than 50% of the reported r.m.s. speeds (profile H21) is included
here. The vertical range of the box marks the minimum and maximum values in that profile.
The horizontal range in Leonard & Luther (1995) and Neumeier & Amos (2006)’s data
represents that in the mean stem d reported in the studies. An exact random distribution was
assumed in calculating (s,)4 for the field data from (A 8). Solid line is (4.1).
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FIGURE 16. o%(x) for (a) Re; = 640-650 (x), 920-1000 (+), and 1420-1460 (*) in a ¢ =0.010
array and (b) Re; =250-280 (x) and 480-530 (+) in a ¢ =0.15 array. The solid line represents
the linear regression on all Re; > 250 data.

densest arrays, K,,/(U,d) again increases with ¢, but more gradually. To the authors’
knowledge, this ¢ dependence of lateral dispersion over one order of magnitude range
of ¢ has not been documented previously.

Nepf et al. (1997)’s measurements of K,,/(U,d) in periodic, staggered cylinder
arrays at Re; > 2000 are included in figure 17 (4) for the purpose of qualitative
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FIGURE 17. Comparison of observed K,,/(U,d) (O) with (2.4) (dash-dotted), (2.17) (dotted),
and (2.18) (dashed) \/E/U in (2.4) is predicted by (4.1); e =d in (2.17), as proposed by
Nepf (1999); k1 in (2.18) is predicted for the arrays used in our experiments as described in
Appendix B; K,,/(U,d) at ¢ =0 is taken from Nepf et al. 1997, table 1. Also represented are
Nepf et al. (1997)’s measurements in periodic staggered arrays of d=0.6 cm, ¢ =0.0046, 0.014
and 0.055 at Re; > 2000. The marker (+) indicates their mean. For the periodic array, (s, )4 was
taken as the minimum distance between cylinders in any direction. Vertical bars on our data
represent uncertainty in the gradient of the linear regression of the variance data, as defined
by (3.10). Vertical bars on Nepf et al. (1997)’s data indicate the quadratic sum of the standard
error and the mean of the experimental uncertainty associated with each measurement. Where
vertical bars are not visible, they are smaller than the size of the marker.

¢ df{sa)a n Ky/(Upd)
0.010 0.28 51 0.21+£0.02
0.031 0.58 56 0.24+0.01
0.060 0.93 44 0.20£0.01
0.091 1.3 61 0.18+0.01
0.15 2.0 35 0.17+0.01
0.20 2.7 48  0.1340.01
0.27 4.0 36  0.17+£0.02
0.35 59 16 0.2440.02

TaBLE 3. Summary of K,,/(Upd) data: n is the number of cases for which Re, > 250
(¢=0.010—0.27) and ReY > 200 (¢ =0.35). The uncertainty was calculated as the uncertainty
in do?/dx, defined by (3.10), divided by 2d.

comparison only. Only measurements for which the exact cylinder configuration is
available (see Zavistoski 1994) are presented. It should be noted that Nepf et al.
(1997)’s measurements do not represent a dispersion phenomenon analogous to the
one investigated in the present study. In their experiments, tracer was injected 54 cm
upstream of the array (Sullivan 1996). It is not obvious how end effects (i.e. the effects
of being transported in non-fully-developed flow) influence the dispersion coefficient.
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FIGURE 18. Comparison of the observed K,,/(U,d) (O) with the theory. K,,/(U,d) at ¢ =0
is taken from Nepf et al. 1997, table 1. Solid line is (2.21), with scaling constants y; =4.0
and y, =0.34, as determined from least-squares fitting to data; (\/k;/U,) in (2.21) is predicted
by (4.1). The two terms that constitute (2.21) — (2.20) (dashed) and (2.16) (dashed-dotted) —
are also presented. The dotted line is the linear superposition of (2.17) and (2.16); e =d was
imposed and the scaling constant y; =4.5 was determined from least-squares fitting to data.
Vertical bars for ¢ >0 represent uncertainty in the gradient of the linear regression of the
variance data, as defined by (3.10). The vertical bar on Nepf et al. (1997)’s data point (¢ =0)
indicates the quadratic sum of the standard error and the mean of the experimental uncertainty
associated with each measurement. Where the vertical bars are not visible, they are smaller
than the marker.

Also, the nearest-neighbour spacing was anisotropic in Nepf et al. (1997)’s arrays,
and (s,), may not be the appropriate length scale.

Models proposed by Nepf (1999) and Koch & Brady (1986) are compared with
experiment in figure 17. Nepf (1999)’s model for turbulent diffusion (2.4) is consistent
with the qualitative trend observed in the sparse array regime (¢ < 0.031). However,
the model does not capture the decrease in K, /(U,d) observed from d/(s,)s =0.58 to
d/(s,)a =2.7 and, consequently, overpredicts K,,/(U,d) above d/(s,)s =0.58. Note
that (2.4) is equivalent to assuming that the product of (l.),/d and the effective
porosity, V,,/V, in (2.15) is constant for all ¢. Consequently, (2.4) predicts that
turbulent diffusion will grow monotonically with d/{s,) 1. In contrast, ({I,),,/d)(V,,/ V)
decreases monotonically as ¢ increases in our formulation (2.16), which permits
a description of turbulent diffusion that decreases with increasing d/(s,), for
d/{s,)a >0.56 (dash-dotted line in figure 18).

At high ¢ (=0.20), where physical reasoning suggests that dispersion due to the
spatially heterogeneous velocity field is most important, Nepf (1999)’s random walk
model (equation 2.17 with € =d =0.64 cm) yields good quantitative agreement with
the data. While Koch & Brady (1986)’s Stokes flow solution (2.18) predicts the
correct qualitative trend at ¢ > 0.20, the quantitative agreement with the experiment
is poor: the solution dramatically overpredicts our measurements at ¢ =0.20, 0.27
and 0.35. Also, (2.18) predicts a rapidly increasing contribution as ¢ decreases
below d/(s,)» =0.44 (figure 17). The laboratory data exhibit the opposite trend, with
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K,,/(U,d) decreasing as d/(s,)a decreases below 0.58. In the proposed modification
(2.20), (2.18) is multiplied by P, s, the probability that a single cylinder in the
array will have a nearest neighbour within r =5d. As ¢ decreases to zero, P;,__s,
monotonically decreases to zero, which also allows (2.20) to remain finite.

The linear superposition of models describing the contributions of turbulence and
the spatially heterogeneous velocity field to net dispersion (e.g. equation 2.21; r"/d =2)
is compared with experiment in figure 18. Recall that r* is the minimum centre-to-
centre separation between neighbouring cylinders necessary for the fluid between
them to contain eddies with mixing length scale I, > d. Here, we anticipated that
I.=1; and imposed r*/d=2. The best-fit scaling constants y; =4.0 and y,=0.34
were determined by substituting (4.1) and r*/d=2 into (2.21) and fitting the
resulting expression, in the least-squares sense, to the observed K,,/(U,d) for
¢ > 0. Because the two expressions for dispersion due to the spatially heterogeneous
velocity field have a similar dependence on ¢, replacing (2.20) in (2.21) with (2.17
(e =d)) yields comparable agreement to data (dotted line). The corresponding scaling
constant for the turbulent diffusion model is y; =4.5. The proposed model for net
dispersion captures the three observed regimes. Some disagreement between theory
and experiment occurs at d/{s,), =2.0 (¢ =0.15), suggesting nonlinear interactions
between the two components of lateral dispersion at this d/(s,). Note that (2.21)
suggests that the contribution from the spatially heterogeneous velocity field to net
lateral dispersion first exceeds the contribution from turbulent diffusion around this
d/{sn)a (=1.6).

The present model for turbulent diffusion suggests that its contribution increases
rapidly with d/(s,) 4 until d/{s,)» =0.56 and then decays as d/(s,) increases farther.
With the best-fit scaling constants determined above, the predicted contribution from
turbulence constitutes less than 1% of the predicted net K,,/(U,d) for d/(s,)4 > 3.3,
and the theory suggests that dispersion arises predominantly from the spatial
heterogeneity in the velocity field due to the solid obstructions. Note that P, _s;, =1
at d/(s,)» > 3.3, and the ¢ dependence predicted by (2.21) is captured entirely by
Koch & Brady (1986)’s Stokes flow solution (2.18). The good agreement despite the
high Re; suggests that, at high ¢, the time-averaged velocity field may not be strongly
altered by turbulence, whose length scale is constrained by the cylinder separation.
This farther suggests that K,,/(U,d) may not change significantly from Stokes flow
to high Re; > 250 at high d/(s,). Additional measurements are necessary to verify
our assumption of Re,; independence. The same data can be used to examine whether
the choice of € =d in the random walk model (2.17) is appropriate at lower Re,.

Finally, let us evaluate the assumption r*/d =2 that we imposed to determine the
scaling constants y; and y, in (2.21). If r* is treated as a third fitting parameter,
least-squares fitting (2.21) to the experimental data at ¢ > 0 yields r*/d =1.6 (y; =3.8
and y, =0.32), which agrees with r*/d =2 to within 20%, suggesting that [, =1/; is a
reasonable approximation.

5. Conclusions

Laboratory measurements of turbulence and lateral dispersion in random arrays
of cylinders of diameter d =0.64 cm at Re, > 250 were presented for ¢ =0.010-0.35.
In sparse arrays, the characteristic size of the largest turbulent eddies is [, =d.
However, when the mean nearest-neighbour cylinder spacing, (s,)4, is smaller than
d, the turbulence length scale becomes constrained by the pore size (figure 12). Thus,
even though mean turbulence intensity increases monotonically with ¢ (figure 14),
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its contribution to solute dispersion declines in this regime. Our experiments verified
that mean turbulence intensity can be predicted in terms of the cylinder density, /;/d,
and C,"™" only. Farther, since C)y"" in a random cylinder array is a function only of
¢ for a constant d (Tanino & Nepf 2008), mean turbulence intensity in a random
cylinder array can be described as a function of ¢ and d only.

The normalized coefficient for net lateral dispersion K,,/(U,d) increases, decreases
and then increases again as ¢ increases. The observed K,,/(U,d) is described
accurately by a linear superposition of models describing the contributions of
turbulence and the spatially heterogenecous velocity field. Comparable agreement
is achieved by describing the contribution from the latter by a one-dimensional
random walk model with a step size that is comparable to the cylinder diameter,
as proposed by Nepf (1999), and by a modification of Koch & Brady (1986)’s
Stokes flow solution. The good agreement with the experiment supports the two
main assumptions of our turbulent diffusion model. First, only turbulent eddies with
characteristic mixing length I, = d contribute significantly to net lateral dispersion.
Second, neighbouring cylinder centres must be farther than r* =2d from each other
for the pore space between them to contain such eddies. The fractional volume of
the array that comprises pores larger than this critical length scale decreases with
increasing d/(s,)a. Consequently, although (,/k,/U,) increases monotonically with
d/{s,), the contribution of turbulent diffusion to net lateral dispersion decreases for
d/{s,)» > 0.56, correctly capturing the observed decrease in net lateral dispersion at
intermediate densities.

The conceptual framework presented here is not specific to arrays of circular
cylinders. Specifically, the results suggest that the integral length scale /; and mean
turbulence intensity can be determined simply from the distribution and geometry
of the elements. In addition, the three d/(s,)s regimes identified for K,,/(U,d) are
expected to apply to solute transport in random arrays in general. Farthermore,
observations of transverse dispersion in ceramic foam agree with Koch & Brady
(1985)’s theory for a packed bed of spheres in Stokes flow (e.g. Pereira et al. 2005,
figure 3d). This agreement suggests that, at least in isotropic media of ¢ = 0(0.13),
transverse dispersion is not sensitive to the exact geometry of the individual obstacles
(Hackert et al. 1996). Similarly, (2.21), with the scaling constants determined in this
work, may accurately describe transport in plant canopies of slightly different stem
morphology. Finally, the good agreement between the data and the model for the
contribution from the spatially heterogeneous velocity field based on Koch & Brady
(1986)’s analytical solution at ¢ = 0.20 suggests that lateral dispersion predictions
based on Stokes flow analysis may be applicable at higher Reynolds numbers at
sufficiently high ¢. Indeed, Hackert et al. (1996) and Pereira et al. (2005)’s transverse
dispersion measurements, which also agree with a Stokes flow solution (discussed
above), were collected at pore Reynolds numbers of 10-300, where inertia is clearly
non-negligible.
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in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. The authors thank Brian L. White
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2002) and Dr Urs Neumeier for providing unpublished velocity measurements from
Neumeier & Amos (2006). The authors would also like to thank David Gonzalez-
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Lateral dispersion in random cylinder arrays 365

nearest-neighbour parameters presented in Appendix A. Finally, we would like to
thank the three anonymous reviewers for their comments.

Appendix A. Mean nearest-neighbour distance and related parameters
in a random array

Consider an array of N circular holes of diameter d randomly distributed in a board
of horizontal area A. The corresponding hole volume fraction is ¢ = (n/4)d* N/ A. This
array is created by generating uniformly distributed random coordinates for the hole
centres. If a random coordinate is sufficiently far from previously assigned holes, that
coordinate is assigned as a hole centre and the appropriate area around it is marked
as occupied. The process is repeated until N hole centres are assigned. Let N, be the
number of random coordinates that has to be generated to assign the N hole centres.
Then, the total number of generated random coordinates that must be neglected,
N.— N, is

N, .
M-y =30 NINDA, A1)
i=1

where A, is the area around a hole centre in which another hole centre cannot be
assigned (referred to as the ‘invalid’ area around a hole centre). Solving for N, yields
N, 1—(2¢/N)A,/(nd*
Ne _ 1= (2¢/N)Ay/(nd*) A2)
N 1—2¢A;/(nd?)
Theoretically, the invalid area around a hole centre is a circle of radius d. Then,
Ah = TCd2.
The generation of random coordinates within a small region of the array satisfies
the two conditions of a Poisson process. First, the expected number of random
coordinates generated per unit area is constant at 4> 0, where

N. ¢ N
A (n/4)d® N~

Second, the number of hole centres in two non-overlapping areas within a small region
of the array can be assumed independent. Then, the number of random coordinates
generated in a circular area a has a Poisson distribution with parameter Aa (Devore
2000, pp. 136-137). Also, the circular area concentric with a random coordinate and
spanning to its nearest random coordinate has an exponential probability distribution
function (p.d.f.) (Devore 2000, pp. 174-175).

In the array, each assigned hole occupies a finite circular area of radius d/2, and the
smallest possible distance between non-overlapping hole centres is d. Then, the p.d.f.
of the circular area concentric with a hole centre and spanning to its nearest-neighbour
hole centre, A,, is truncated at a = Ay :

A (A3)

T 1 /Ie’i“, Cl)AL
ran =g {5 4z (A%)
where
B = Je*da = e M (A3)
A

and A, =nd’. Although A; and A, are equal here, the two parameters are not
interchangeable, as will be shown in §A.1. A; is, by definition of (A 4), a circular
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FIGURE 19. Definition of invalid area around an assigned hole centre. Physically, the area
invalidated by the finite volume of the hole (solid circle) is the dotted circle, radius d.
However, a 2d x 2d square around a hole centre was defined as invalid space in the numerical
code used to assign the hole coordinates in the PVC sheets used in the laboratory experiments.
The dashed circle marks the circle that circumscribes this square region.

area that defines the smallest a for which f(a;/) is non-zero. In contrast, A, does
not assume a geometry for the invalid area around an assigned hole.

This distribution describes the value measured by taking an array of randomly
distributed hole centres, selecting one hole centre, and finding its nearest neighbour
and the corresponding A,. Additional values would be measured by repeating these
steps in different independent arrays. This process is different from identifying the
nearest neighbour of, and measuring the corresponding A, for, each hole centre in a
single array, where measurements are dependent. While the two random variables have
different distributions, their means are the same. Thus, ffooc af(a)da yields the correct
mean radial area (A, )4 to the nearest-neighbouring hole centre. From (A 4) and (A 5),
the expected values for the centre-to-centre distance between nearest neighbours, s,.,
and s?2, are

(s _ [Ar 1 erl(TAL)

=1/— A6
d nd?  2\[ld%eA (A6)
and
(Sec)a _ (Aa _ AL 1
nc = n _ L . A
d? nd? nd? + Jnd? (A7)
Applying A;, A, =nd>, (A2) and (A3) to (A6) and (A7) yields
d 2 4¢ o—40/(1-29)
and
2
: 142
<SnLZ>A ~ + ¢ ) (A 9)

d 4

A.1. Invalid area defined as a 2d x 2d square
In creating the PVC sheets used in this study, a 2d x 2d square circumscribing each
assigned hole was invalidated instead of a concentric circle of radius 4 (figure 19).
Here, A, = (2d)? instead of Aj, =nd?, and (A 2) yields
N. 1—-2d*/A N 1

N 1-@/mp 1 (8/m)¢’
The corresponding / is determined by substituting (A 10) into (A 3).

(A 10)
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The p.d.f.is f(a;4)=0 in the region r <d and of the same form asa > A, in (A 4)
in the region r > d \/5 Between these two concentric circles, 1.e. d < r <d ﬁ, f=0
inside the 2d x 2d square. Accordingly, in this region (A 4) must be weighted by the
ratio of the area that is outside the invalid square (shaded area in figure 19) and the
total area. Consider a circle of radius r, such that d < r <d+/2. The total perimeter
of the circle is 2mr, of which 8(r arccos(d/r)) remains outside of the square. The ratio,
4arccos(d/r)/m, correctly becomes zero at r =d and 1 at r =d+/2. The p.d.f. is

Je, a = m(d+/2)?
1
LY .4
fla;4) = B ie‘“‘; arccos (d\/E> , md® <a < m(d2)? (A11)
a
0, a < nd>

where

0 . rt(d\/f)2 4 T
B = / e da + / Je " = arccos (d\/>) da. (A12)
ni(d2)? nd? n a

Because the second integral in (A 12) cannot be solved analytically, an approximate
method is required. One possible approach is to define an equivalent circle of radius
r. with the same contribution to (s,.)4 (figure 19); r. must satisfy:

/re rf(a) da :/ / VA2 + y2 f(a) dx dy. (A13)
0 y=—d =—d

To simplify the computation, we approximate f(a)= 1, which reduces (A 13) to

2 1/3
={n[\/§+ln(1+\/§)]} . (A 14)

Note that 1<r,/d < \/Z as expected. Now, the invalid area has been transformed
from a 2d x 2d square to a circle of radius r, concentric to a hole centre. The
corresponding p.d.f. is the same as (A 4), but with

2/3
AL_m»—mﬂ{ \[+1n1+\f} . (A 15)

Substituting 4 and (A 15) into (A 6) and (A 7) yields

(Sne) A ~ {725[\/5 +In(1 + ﬁ)]}

1/3

d

1 —erf \/ b { [\[-l-ln(l—i-\[)]}

—(8/m)¢ pry—
" Do~ 4/ 1—(8/m)¢ { 2/m)[/2+In(14+/2)] } \/E\/T (A 16)

2 B 23
< nc>A ~ 1 —(8/m)¢p { f+1n(1 _{_f) } . (A17)

d? 4¢
Previously, the means of all s,./d and s2./d> were determined. Repeating the
calculation with A; = nr*z, where r* > r, is an arbitrary distance, yields the conditional

and
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FiGUure 20. Sketch of two random coordinates (B, C) generated near random coordinate
A where a hole is already assigned (solid circle).

mean of s,.>r" in the random array. Applying 4 and the redefined A, to (A 6) and
(A7) yields

L E et /d JGTT=(8/mpgl} (A18)

<Snc>s,,r>r* _ VAN

r*
d T d 4 /1= (8/m)ple T /d4e/l1-8/m9]

and

(A 19)

d? d 4¢

The hole surface-to-surface spacing is related to the centre-to-centre spacing as
Sy = Spe — d. Then, by definition,

($ic)a _ (S0a o (80c)
nc/A __ n/A nc/A _
2 +2 y 1, (A 20)
and (s2), -, /d*> can be determined by applying (A 18) and (A 19) to (A20). The
probability that a cylinder in the random array has its nearest neighbour farther than
r=r"1is

— i

© (A21)

AL’

”
Py - = P(m’*2 <a<ow)= / fla;2)da =
o+

where f(a; 1) is defined by (A 4). A, is given by (A 15). Similarly, the probability that
a cylinder has its nearest neighbour within r = 5d is

s 2
6725And

P, .ss=P0<a< n(Sd)z) =1— —
e—AL

(A22)

A.2. Significance of hole generation order

Finally, note that the above formulation underpredicts the observed A, at large ¢,
because it does not account for the overlapping of holes other than the reference
hole (hole A in figure 20). Consider the situation illustrated in figure 20, where the
random coordinates are generated in the order A, B and C. Coordinate A is, by
assumption, assigned as a hole centre. The coordinate closest to A is coordinate C,
which is at distance ry from A. It is the distribution of this distance that the theory
(A 4) describes. However, coordinate B, which is at radial distance r; from the test
hole centre, is generated first. Because coordinates B and C are within d of each other,
coordinate C would be discarded and the closest assigned hole centre to A would be
B, at distance ry (= ry).
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Appendix B. Permeability of random cylinder arrays

The permeability, k,, of sparse arrays can be described by Spielman & Goren
(1968)’s analytical solution:

d? 1> | d K@k}

L il St SR § Bl
ki 8¢ Aki K7 Ko{(@/2)k 7} ®B1)

where K; is the modified Bessel function of order j of the second kind. Koch &
Ladd (1997) showed that Spielman & Goren (1968)’s solution accurately describes
numerical simulation results at low ¢, but rapidly deviates as ¢ increases beyond
¢ ~0.25. Interestingly, k; ~ (s,)3, where k is described by (B 1) and (s,) 4 is described
by (A 8). The difference between the two expressions is less than 10% in the range
0.006 < ¢ < 0.42.

To the authors’ knowledge, an analytical solution that describes &k, in the range
0.3 < ¢ < 0.4 has not been developed. Least-squares fitting a function of the form
log,o{(fp)/(1(®))} = Bo+ B1¢ to numerical data in the range ¢ =0.25-0.44 in Koch &
Ladd (1997, figure 21) yields (R=0.99,n =17)

<fTi> — 10094H0.04-+(3.220.1)9 (B2)
(i)
The corresponding empirical expression for k; is, from (2.19),
di _ 4¢ 100-94:£0.04+(3.240.1)¢ (B3)
ki m(l—¢)

Note that (B 1) and (B 3) coincide at ¢ =0.24 (d/(s,)4 =4.4). Following the above
discussion, k; can be predicted from (B1) for d/{(s,)4 < 4.4 and from (B3) for
d/{s,)s > 4.4

Finally, recall from Appendix A.1 that our arrays are not exactly random. In our
laboratory experiments, k, are predicted from (B 1) and (B3) by matching d/{s,)a,
1.e. ¢ in the two expressions is not the actual ¢ of our array, but ¢ of an exactly
random array that has the same d/(s,)4.
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